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Introduction

Objective: The aim of this study is to develop a prediction model 
for upper urinary tract infective stones by a machine learning ap-
proach at to provide a basis for decision making for the assisted di-
agnosis and personalized treatment of upper urinary tract infective 
stones in vivo.

Methods: Preoperative CT plain images and other clinical data of 
780 patients with upper urinary tract stones, including 165 infected 
stones and 615 noninfected stones, whose stone composition was 
determined by infrared spectroscopy at the Second Affiliated Hos-
pital of Kunming Medical University from January 2016 to Decem-
ber 2021 were retrospectively analyzed. The CT plain scan images of 
stones were manually segmented, and imaging histology (Rad) fea-
tures were extracted, while Deep Transfer Learning (DTL) features of 
CT images of stones were extracted using the pretrained ResNet34 
algorithm. At test, Spearman rank correlation test and minimum ab-
solute shrinkage and selection operator regression were used for the 
fusion features of clinical, Rad and DTL features and images Rad- DTL 
features for feature selection, and then machine learning classifica-
tion models such as Support Vector Machine (SVM), K-Nearest Neigh-
bor (KNN), random decision forest (RF) and XGBoost were trained 
to build classification models separately and compare their perfor-
mance by determining the Area Under The Curve (AUC). The accuracy 
of the three models, Rad, DTL and Rad-DTL, as well as the AUC, were 
compared, and the model with the best performance was selected. A 
nomogram plot was created by combining the classification models 
built from the clinical data.

Results: Imageomics and deep transfer learning extracted 1218 
and 512 image features, respectively, and clinical features screened 
7 clinical risk factors with P < 0.05. The accuracy and AUC of the Rad 
feature model were 82.1% and 0.763, respectively, the accuracy and 
AUC of the DTL feature model were 80.7% and 0.806, respectively, 
and the accuracy and AUC of the Rad-DTL feature model. The accura-
cy and AUC of the classification model built with clinical features were 
80.8% and 0.630, respectively. By comparison, the optimal model for 
image features was Rad-DTL, and the AUC of the nomogram map 
built with clinical features was 0.917 (95% CI: 0.850-0.985).
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Introduction

Urolithiasis is a common disease of the urinary system, and 
according to statistics, more than 1%-15% of the world’s popu-
lation has a history of urolithiasis [1]. The prevalence of kidney 
stones in domestic adults is approximately 5.88% [2]. The main 
components of urinary stones are calcium oxalate, calcium 
phosphate, uric acid, magnesium ammonium phosphate, and 
cysteine [3]. Infected stones account for approximately 15% of 
urinary stone disease and are therefore an important group 

[4]. Infected stones have a higher rate of recurrence and loss 
of kidney function and often carry a high risk. Infected stones 
can cause severe intraoperative and postoperative urogenital 
sepsis, often leading to patient death due to infectious shock. 
Therefore, preoperative prediction of the composition of infect-
ed stones is of great significance. However, accurate detection 
of stone composition can only be performed in vitro and usu-
ally requires the use of Fourier Transform Infrared Spectroscopy 
(FTIR), X-ray diffraction [5,6] or polarized light microscopy to 
analyze the stone composition of the removed stone fragments 
after the stone specimens are obtained. Therefore, preopera-
tive prediction of stone composition in the body by a rapid and 
noninvasive method is important for the treatment of urolithia-
sis and prevention of recurrence.

Nonenhanced CT is the gold standard for the diagnosis of 
urolithiasis, and CT image features have great value in predict-
ing stone composition [3,5,6]. It has been shown that CT stone 
attenuation values in Hounsfield units can be used to predict 
stone composition [7,8], with less satisfactory results. Dual-en-
ergy CT has also been used to predict stone composition, but 
several studies have shown that dual-energy CT is only highly 
accurate in differentiating uric acid stones from nonuric acid 
stones but fails to effectively differentiate nonuric acid stones, 
such as calcium stones, cystine stones, or infected stones [9,10]. 
Imaging histology is a specific research approach of artificial in-
telligence in the medical field that can mine massive quantita-
tive image features from medical images and use statistical/
machine learning methods to filter the most valuable imaging 
features for parsing clinical information [11]. In recent years, 
deep Convolutional Neural Networks (CNNs) have made signifi-
cant achievements in the field of computer vision with similar 
functions in medical imaging [12-14]. Successful implementa-
tion of the above methods in medical imaging requires a suf-
ficient number of training cohorts. However, acquiring a large 
number of medical images is difficult [15]. Pretrained CNNs, 
called “Transfer Learning (TL)”, have been increasingly used in 
various medical image analysis fields in recent years [16,17]. TL 
improves model performance in the target task by transferring 
previously learned features from the source task.

Conclusion: The upper urinary tract infected stone prediction 
model established by fusing imaging histology, deep transfer learning 
features, and clinical features can successfully predict infected and 
noninfected stones in vivo before surgery, and the established nomo-
gram map has good clinical utility.

The purpose of this study is to compare the performance of 
imaging histology features and deep transfer learning features 
in building an infectious stone prediction model and to try to 
fuse the two features to build a fusion model with better per-
formance for in vivo upper urinary tract infectious stone com-
ponent prediction and personalized treatment.

Materials and methods

Patients

The case data for this study were extracted from the XX 
Hospital Urolithiasis Specialized Database. The preoperative 
CT plain images and other clinical data of 1780 patients with 
upper urinary tract stones whose stone composition was de-
termined by infrared spectroscopy from 01-2016 to 12-2021 in 
the urinary tract stone specialization database were retrospec-
tively analyzed. The nadir criteria and case screening process 
are shown in Supplementary Figure 1.

The CT images in this study were all nonenhanced urological 
stone CT images of patients before surgery, and the CT image 
acquisition settings are shown in Supplementary Table 1. All CT 
images were desensitized, all CT images were reviewed by an 
experienced radiologist and a urological clinician, and the CT 
image data were recorded while processing the images. Accord-
ing to the literature [18,19], the predictive factors included the 
maximum cross-sectional area of stones, stone location (renal/
ureteral), stone site (left side/right side/bilateral), number of 
stones (single/multiple), and CT values of stones, with any dis-
agreement resolved by negotiation. Other clinical features in-
cluded sex, age, hypertension, diabetes mellitus, urine culture, 
urine white blood cell count, urine nitrite, C-reactive protein, 
calcitoninogen, interleukin-6, urine pH, triglycerides, and blood 
white blood cell count. Stone composition was analyzed by 
FTIR, and if the stone composition exceeded 50%, the composi-
tion was considered to be major. Through inclusion and exclu-
sion criteria, 780 patients were finally enrolled, including 165 
with infected stones and 615 with noninfected stones.

Image preprocessing and stone segmentation.

The preoperative nonenhanced CTs of all enrolled patients 
were dicom files, and for possible errors caused by different 
layer thicknesses of different machines, all enrolled CT images 
were normalized and resampled, and the Region of Interest 
(ROI) was semiautomatically segmented using the threshold 
segmentation method with MITK (v2021.02), i.e., The region of 
interest (ROI) is the area where the urinary stones are located. 
The stones were segmented layer by layer to ensure that the 
stones in each layer were segmented, as shown in Figure 1, and 
the window widths were manually set to facilitate the differen-
tiation of stones and surrounding tissues for more accurate VOI 
outlining.
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Figure 1: Delineation of the region of interest (ROI): a. Original im-
age; b. Image after labeling the VOI.

Feature extraction

The PyRadiomics platform (version 3.0) based on python 
(version 3.6) was used to extract image histology features from 
each volume of interest. We named Rad features and adjusted 
the built-in parameters of the PyRadiomics platform to set the 
image type and the type of extracted features. The image types 
are Original, Laplacian of Gaussian (LoG) and Wavelet, and the 
feature types are shape, firstorder and texture features.

In this study, we trained a TL learning network using a Med-
icalNet-based pretrained ResNet34 network to overcome the 
overfitting problem suffered by conventional deep learning due 
to insufficient training data. The steps are as follows: ROI 3D im-
ages are fed to the pretrained network; the average probability 
from all ROI images is used to generate TL features; and the 
penultimate FC layer output is used as TL features [20]. Based 
on these pretrained deep learning network extracted features, 
we call them DTL features. The DTL feature extraction process 
is shown in Figure 2.

Figure 2: Deep transfer learning (DTL) feature extraction process.

Feature fusion

To improve the accuracy of predicting infective stones in up-
per urinary tract stones, we attempted to fuse imaging histol-
ogy features and deep transfer learning features. The fusion 
scheme combines various features for subsequent analysis. The 
fused features are named "Rad-DTL" features.

Feature selection

Intra- and intergroup correlation coefficients (ICCs) were 
used to assess the consistency of radiomics features. CT im-
ages of 50 enrolled patients were randomly selected, and ROIs 
were simultaneously labeled by one radiologist and one urol-
ogy clinician to calculate intergroup correlation coefficients. Ten 
days later, CT images of these 50 enrolled patients were again 
labeled by this radiologist with the ROIs labeled 10 days earlier. 
ICC calculations were performed, and features with ICC >0.75 
were considered consistent, reproducible and stable [21] and 
retained for subsequent analysis.

For the three features of Rad, DTL and Rad-DTL, we used a 
three-step feature selection method to select the best features 
to distinguish infected stones from noninfected stones. First, 

Mann‒Whitney Utest statistical tests and feature screening 
were performed for all Rad features. Only Rad features with a 
P value < 0.05 were retained. Then, we used Spearman's cor-
relation coefficient to assess the linear correlation between in-
dividual features with redundancy elimination [22]. Once two 
features have a stronger correlation, they will have a higher 
absolute value of the correlation coefficient. When the Spear-
man correlation coefficient between each feature was >0.9, we 
selected one of the features for subsequent analysis. Finally, 
feature selection was performed using least absolute shrinkage 
and selection operator (LASSO) regression, using nonzero co-
efficients as valuable predictors in each feature group [23]. In 
addition, clinical features were screened using a t test, and P 
values were calculated for each clinical feature with significance 
at P < 0.05.

Model construction

After feature selection, the dataset was divided by 10-fold 
cross-validation for subsequent modeling, and we used the Py-
thon machine learning algorithm library to develop machine 
learning classification models for each feature. The different 
performances of machine learning classification models such 
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as Support Vector Machine (SVM), K-Nearest Neighbor (KNN), 
random decision forest (RF), and XGBoost are compared. The 
discriminative power of the models is assessed by comparing 
their area under the curve (AUC) and accuracy line graphs. The 
process of model building for the three features is shown in Fig-
ure 3.

In this study, the clinical feature data partitioning followed 
the 10-fold cross-validated dataset partitioning of image fea-
tures, and the best model screened by CT image feature model-
ing above was used for clinical baseline data modeling.

Figure 3: Model building process: (a) Rad feature building model 
process; (b) Rad-DTL feature building model process; (c) DTL fea-
ture building model process.
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The three models (Rad, DTL, and Rad-DTL) were compared, 
and the optimal model was derived. The clinical baseline data 
modeling was named the "clinic model", and the two models 
were used to calculate the probability of each patient's stone 
being an infected stone. The two models were named the "Rad-
DTL_ signature" and "clinic signature". A nomogram was cre-
ated from the two signatures for visualization and application 
of the models.

Statistical analysis

All statistical analyses were performed using Python software 
(version 3.6) based on PyRadiomics and deep transfer learn-
ing image features extracted from the pretrained ResNet34 
network, and the U test, Spearman correlation coefficient and 
LASSO were used for image feature screening. Clinical baseline 
data were screened using a t test, and this study used 10-fold 
cross-validation to divide the dataset, thus eliminating the ef-
fect of data division on model evaluation and avoiding better or 
worse results for a particular division.

Results

Clinical features

Supplementary Table 2 summarizes the characteristics of the 
patients in the training and test sets. Of these patients, 21.2% 
(165 of 780) had infected stones, and the stone composition 
characteristics of all enrolled patients are shown in Supplemen-
tary Table S3, with age, sex, stones size, interleukin-6, urinary 
leukocyte count, urinary pH, urinary culture, and nitrite signifi-
cant by t test.

Image features

A total of 1218 Rad features were extracted from the CT im-
ages of each patient. Since the edges of urinary tract stones in 
CT images were very clear, satisfactory interobserver feature ex-
traction reproducibility was achieved, 22 features were exclud-
ed after ICC screening, and 1196 Rad features were retained. 
DTL features were extracted by a pretrained ResNet34 network, 
and a total of 512 DTL features were extracted. A total of 1708 
Rad-DTL features were fused with Rad features and DTL fea-
tures, and the above three features were regularized (Z score) 
so that the data obeyed N~(0, 1). The above features were 
screened by the U test, and P < 0.05 was considered significant; 
then, the correlation between the features was calculated using 
the Spearman correlation coefficient for the screened features, 
and for the features with correlation coefficients greater than 
0.9, one of the two was retained. Then, cross-validation of the 
data using Lasso was used to screen the best penalty coefficient 
lambda. For the features, 10 Rad features, 21 DTL features and 
41 "Rad-DL" features with nonzero coefficients were retained 
for further screening. The three features and their correspond-
ing coefficients are shown in Figure 3.

 
Figure 4: Modeling feature weights for the three models.

Image feature model construction and model comparison

The accuracy and test set AUC of the five models for the three 
features are shown in Figure 5. By comparison, the SVM model 
has the best performance. The accuracy and AUC of the Rad 
feature model are 81.1% and 0.826 and 82.1% and 0.763 in the 
training and test sets, respectively; the accuracy and AUC of the 
DTL feature model are 84.4% and 0.965 and 80.7% and 0.806 
in the training and test sets, respectively; and the accuracy and 
AUC of the Rad-DTL feature model are 91.8% and 91.8% in the 
training and test sets, respectively. AUCs were 91.8%, 0.985 and 
87.2%, 0.902, respectively, and after comparison, the Rad-DTL 
feature model had the best prediction performance among the 
three image features established for the infected stone predic-
tion model, and the ROC plots of the Rad-DTL feature model in 
the training and test sets are shown in Supplementary Figure 2.



www.jclinmedimages.org       Page 5

Figure 5: Evaluation of three image feature building models using each of the five machine learning classification 
algorithms. a. Accuracy line graphs for each of the three features to build the 5 models; b. AUC for each of the 
three features to build the 5 models

Clinical characteristics model evaluation

Based on the optimal model SVM filtered by CT image fea-
tures to build the clinical feature model, the model accuracy 
was 79.1% for the training set and 80.8% for the test set, the 
AUC was 0.585 for the training set and 0.630 for the test set, 
and the model ROC graph and accuracy line graph are shown in 
Supplementary Figure 3. The model efficacy was worse than the 
model built by CT image features.

Nomogram mapping

For a more friendly application to clinical scenarios, a nomo-
gram plot was developed in this study based on the CT image 
feature optimal model Rad-DTL feature model combined with 
the clinical feature model (Figure 6). rad-DTL_ Sig and Clinic Sig 
represent the probability that the stones are infected stones for 
each patient in the image optimal model and the clinical model.

Figure 6: Nomogram plot of the upper urinary tract infective stone 
prediction model: the nomogram plot built on the basis of the Rad-
DTL characteristic model: Clinic_Sig indicates the predicted prob-
ability of the clinical characteristics, and Rad-DTL_Sig indicates the 
predicted probability of the Rad-DTL characteristic model.

Model evaluation and comparison

The diagnostic effectiveness of the nomogram map was test-
ed in the test set, and ROC curves were plotted (Figure 7a) to 
evaluate the diagnostic effectiveness of comparing the optimal 
model of CT images, the Rad-DTL feature model, the clinical 
feature model and the nomogram map. The nomogram map 
had the best diagnostic effectiveness, and the nomogram map 
showed good discrimination between infected and noninfected 
stones in discriminatory ability with an AUC of 0.917 (95% CI: 
0.850-0.985). The calibration curves (Figure 7b) were plotted to 
assess the calibration efficiency of the Rad-DTL characteristic 
model, clinical characteristic model and nomogram plot. The 
calibration curves depict the calibration of the infected stone 
prediction model in terms of the agreement between the pre-

Figure 7: Performance of the nomogram model: (a) ROC curves 
of the clinical characteristic model, Rad-DTL characteristic model 
and nomogram plot; (b) calibration curves of the clinical charac-
teristic model, Rad-DTL characteristic model and nomogram plot: 
x-axis and y-axis represent the predicted probability and actual 
probability of occurrence of infective stones, respectively, Rad-DTL 
characteristic model; (c) DCA curves of the clinical characteristic 
model, Rad-DTL characteristic model and nomogram graph: the 
three curves representing the clinical characteristic model, Rad-
DTL characteristic model and nomogram graph are above the two 
reference lines (black solid line and black dashed line), all of which 
have good clinical utility.

dicted and observed probabilities, and it can be seen from the 
figure that the Rad-DTL characteristic model, clinical character-
istic model and nomogram plot all showed good calibration. 
The DCA curves (Figure 7c) were plotted to evaluate the clini-
cal utility of the prediction models, and the three curves repre-
sented by each of the Rad-DTL characteristic model, the clinical 
characteristic model and the nomogram plot were above the 
two reference lines, indicating that all three models were well 



www.jclinmedimages.org       Page 6

calibrated. The combination of the three evaluation methods 
suggests that the use of nomogram plots for preoperative pre-
diction of infected stones has been shown to have better clinical 
benefit.

Discussion

Urolithiasis is the most common disease in urology, and its 
prevalence has increased globally in recent decades [24-26]. 
China is one of the high prevalence areas for urolithiasis, espe-
cially in southern China [24]. Different types of stones have dif-
ferent treatment strategies. A special subset of urinary stones 
is mostly caused by urinary tract infections, and the manage-
ment of infected stones is particularly challenging [27]. The risk 
of infectious complications after surgery for infected stones has 
been reported to be high, and when infected stones are pres-
ent, they may cause urogenital sepsis, which can be life-threat-
ening [28-30]. In recent years, with the progress of science and 
technology and the improvement of medical standards, various 
minimally invasive surgical techniques have been carried out in 
large numbers. However, the incidence of intraoperative and 
postoperative urogenital sepsis is also significantly higher [31]. 
It can lead to death of patients due to infectious shock, mainly 
related to the release of bacteria inside the stone and the en-
dotoxin produced by it into the blood during surgical lithotripsy. 
Compared to other component stones, infected stones have a 
higher rate of recurrence and loss of renal function and are of-
ten associated with greater risk, and urologists are often faced 
with the challenge of infected stones. Treatment of infected 
stones relies on the use of antibiotics (before and after stone 
removal) to remove floating bacteria from the urinary tract and 
surgical treatment to remove all stone fragments. Complete 
stone removal is critical because residual stones after surgery 
are an independent risk factor for recurrence of infected stones 
[32,33]. Therefore, clinically, preoperative determination of 
stone composition helps to identify the underlying etiology of 
urinary stones and facilitates early interventions such as preop-
erative prophylactic antibiotics, more aggressive removal of all 
stone fragments and extraction of pelvic urine for culture and 
drug sensitivity testing at the time of surgery, and postopera-
tive maintenance antibiotic therapy based on drug sensitivity 
test results to reduce the risk of postoperative urogenital sepsis 
[34].

To date, there have been many studies on preoperative 
prediction models for urological stone composition, including 
the use of dual-energy CT with dual-energy characteristics to 
perform densitometry of stone CT at two photon energies and 
color coding of different types of stones as a way to identify 
stone composition [35-37], but the results show that DECT is 
only significantly effective in predicting uric acid stones and 
dual-energy CT in the general clinical setting. However, the re-
sults showed that DECT was only significant in predicting uric 
acid stones, and dual-energy CT is not routinely used in gen-
eral clinical settings, so its use in clinical practice is limited. In 
addition, Black KM et al [10] automatically detected the com-
position of kidney stones from digital photographs of stones 
from 63 patients by deep learning. A deep convolutional neural 
network (CNN), ResNet-101, was used to build a multiclassifi-
cation model. Although this study suggests that deep learning 
algorithms can be applied to the classification and prediction 
of urinary stone composition with good results, the specimens 
of this study were stones removed after surgery, which did not 
achieve the purpose of preoperative prediction and therefore 
could not achieve the purpose of preoperative intervention for 

the patient’s stone composition. In recent years, imaging histol-
ogy has been widely used in various medical disciplines and has 
achieved better results in the classification and prognosis of dis-
eases. Zheng J et al. [38] established a nomogram graph, a pre-
diction model for infected stones, by extracting the radiomicsal 
features of CT images of stones through machine learning, and 
the nomogram graph was found to be more effective in the 
training and three validation sets (area under the curve [95% 
confidence interval] 0.898 [0.840-0.956], 0.832 [0.742-0.923], 
0.825 [0.783-0.866], and 0.812 [0.710-0.914], respectively), 
and achieved more satisfactory results, and our study, not only 
extracted the deep transfer learning features of CT images on 
this basis, and separately built the Our study, however, not 
only extracted the deep transfer learning features of CT images 
based on this, and built machine learning models separately, 
but finally fused the two features to build an infected stone pre-
diction model, and the final model Nomogram maps had AUCs 
of 0.985 (95% CI: 0.972-0.998), 0.917 (95% CI: 0.850-0.985) in 
the training and test sets, which were significantly higher than 
that study. Our study not only established a prediction model 
for preoperative in vivo prediction of infected stones but also 
mined more features from CT images of upper urinary tract 
stones, which enriched the feature engineering of the urinary 
stone prediction model and provided more references for the 
prediction of urinary stone components.

In this study, we reveal some imaging-omics and deep trans-
fer learning features that help to distinguish infected stones 
from noninfected stones. The prediction models built with 
radiomics and deep transfer learning features showed better 
performance in terms of accuracy and AUC in the training set, 
and the accuracy and AUC of the Rad-DTL model built by fusing 
radiomics and deep transfer learning features were better than 
those of the prediction models built with radiomics and deep 
transfer learning features alone.

This study is an exploratory comparison and fusion of im-
aging histology and deep transfer learning feature models in 
differentiating stone components. The accuracy and AUC of ra-
diomics models in stone composition still need to be improved. 
Similar studies on deep learning features for stone composition 
classification prediction have not been found, and our study 
shows that deep learning features are effective in stone com-
position classification. Studies directly comparing the perfor-
mance of radiomics and deep transfer learning models have not 
been explored. In this study, we address these issues and aim to 
further enhance the interpretability of such machine learning 
models. A prediction model with better predictive performance 
for infected stone composition was also established by fusing 
radiomics and deep learning features, which can well predict 
infected and noninfected stones with higher accuracy before 
stone removal and provide assistance for targeted prevention 
and treatment of infected stones in the upper urinary tract.

Our study has some limitations. First, this is a single-center 
study, and due to the differences in medical equipment and 
scanning parameters between hospitals, it is unclear how well 
the machine learning model works when applied to other cen-
ters. In the next step of our study, we will consider integrating 
data from multiple centers to create an external test set to 
further test the generalization ability of the machine learning 
model. On the other hand, although we extracted CT image fea-
tures using a pretrained ResNet34 model, these deep transfer 
learning features are not specifically defined, and in the future, 
we will explore the image coding process used to generate each 
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deep learning feature to further enhance the interpretability of 
these features.

Conclusion

This study reveals deep migratory learning and imaging his-
tology features associated with infected stones that contribute 
to the understanding of the imaging phenotype of infected 
stones. In addition, we compared the performance of deep mi-
gratory learning features, imaging histology features, and fusion 
features (Rad-DTL features) for predicting infected stones using 
nonenhanced CT images and showed the potential to improve 
the performance of preoperative aid in diagnosing infected 
stones with the help of machine learning prediction models. In 
addition, nomogram maps built by combining Rad-DTL features 
and clinical features have better performance in predicting in-
fective stone composition and can be used as a noninvasive ad-
junctive diagnostic tool to identify infective stones in the upper 
urinary tract in vivo, better informing preoperative personalized 
prevention and treatment decisions for patients with infective 
stones in the upper urinary tract.
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